
Journal of Statistical Physics, Vol. 82, Nos. 1/2, 1996 

sl(N) Onsager's Algebra and Integrability 

D.  B. Ug l ov  ~ and I. T. lvanov ~ 

Received February 22, 1995 

We define an sl(N) analog of Onsager's algebra through a finite set of relations 
that generalize the Dolan-Grady defining relations for the original Onsager's 
algebra. This infinite-dimensional Lie algebra is shown to be isomorphic to a 
fixed-point subalgebra of sl(N) loop algebra with respect to a certain involution. 
As the consequence of the generalized Dolan-Grady relations a Hamiltonian 
linear in the generators of sl(N) Onsager's algebra is shown to possess an 
infinite number of mutually commuting integrals of motion. 
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1. INTRODUCTION 

The seminal  work  of  Onsager  of  1944 on the exact solut ion of  the p lanar  
Ising model  I~ has been a source of  a considerable  par t  of  the subsequent  
developments  in the field of  exactly solvable models  in statist ical  mechanics 
and field theory.  One branch of  these developments ,  which or iginated with 
the s ta r - t r iangle  relat ion t~'-'~ and let to the Yang-Bax te r  equat ion and later  
to theory  of  quan tum groups,  was par t icular ly  vigorous.  

Yet the s ta r - t r i ang le  relat ion did not  p lay any essential role in 
Onsager ' s  original  solut ion of  the 2D Ising model.  Indeed it is only men-  
t ioned in ref. I. The crucial par t  was played by a certain infinite-dimen- 
sional Lie a lgebra  which is now called Onsager ' s  a lgebra  and by what  one 
may  call associated representa t ion theory.  
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This algebra can be described by introducing the basis {A .... G,,}, 
m = 0, _ 1, _ 2,...; n = 1, 2 ..... Commutation relations in this basis are 

[A/, A,,,] =4G/  . . . .  l>~ m 

[GI, A.,] = 2 A . , + I - 2 A  .... i 

[ G~, Gm] =0 

(i) 

(2) 

(3) 

Even though this algebra was at the center of Onsager's original solu- 
tion of the 2D Ising model, it received substantially less attention in subse- 
quent years than the star-triangle relation. In the context of the Ising 
model the algebraic method of Onsager was superseded by simpler and 
more powerful methods that rely on the equivalence of the 2D Ising model 
to a free-fermionic theory I31 and the dimer problemJ 41 This caused 
Onsager's algebra to remain in a shadow for quite a long time. The situa- 
tion changed in the 1980s when several important advances related to 
Onsager's algebra took place. We briefly review some of these below in 
order to set up a background for the subsequent discussion. 

Dolan and Grady ~51 considered Hamiltonians H of the form (in a 
different notation) 

H = A o + k A i  (4) 

where k is a constant and Ao, A~ are operators. They showed that the 
following pair of conditions imposed upon the operaors A o and A~ 
(Dolan-Grady relations) 

[Ao. [Ao. [Ao, A , ] ] ]  = 16[Ao, A,]  

[A,,  [A, ,  [ A , . A o ] ] ]  = 16[A,, Ao] 

(5) 

(6) 

are sufficient to guarantee that H belongs to an infinite family of mutually 
commuting operators, integrals of motion for H. To be more precise, 
only one of the relations (5), (6) was considered in ref. 5: the second one 
was produced as a consequence of certain duality condition imposed on 
the operators Ao, A~. The Dolan-Grady relations in the form (5), 
(6)--without the assumption of duality--were first discussed in refs. 8 
and 9. Based on the work of Dolan and Grady, Perk 171 and Davies ts~ estab- 
lished, moreover, that the Lie algebra generated by two "letters" Ao, A, 
subject to the relations (5), (6) is precisely Onsager's algebra as defined in 
(1)-(3). The elements Ao, A~ of the basis {Am, G,,} are identified with Ao, 
A l in (5), (6) and all the rest are expressed as commutators of Ao and A1. 
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The representation of the generators Ao and A ~ which was considered 
by Onsager is 

L L 

Ao= A, = Z (7) 
i = l  i = l  

and after substitution in (4) gives the Hamiltonian of the transverse Ising 
chain. This Hamiltonian is defined on a periodic chain of length L; and tT,": 
are Pauli matrices representing local spins on a site with a number i. It is 
well known that the Jordan-Wigner transformation brings this Hamiltonian 
to a free-fermionic form/3) 

The important question of whether there are other representations of 
the relations (5), (6) leading to nearest neighbor spin Hamiltonians that 
are not free was answered affirmatively by von Gehlen and Rittenberg in 
1985, (6) who found a family of such representations. For every integer 
M >/2 they define 

=i =i+l  (8) Ao=  Y. A, .=, 
i = 1  n = l  

where ,Vi, Zi are local ZM spin operators satisfying [X~, Xj] = [Zi, Zj] = O, 
ZiXj=coaoXjZ,, Z ~ = X ~ = I ;  and co=exp(Zzd/M). When M = 2  this 
representation coincides with Onsager's original representation (7) for 
the Ising model. For arbitrary integer M the spin-chain Hamiltonians of the 
form (1) with A o, A] given by (8) were later shown to be certain--so-called 
superintegrable c14"12" 17)--specializations of the spin chains generated by the 
2D chiral Potts model. (~~ Von Gehlen and Rittenberg also observed 
numerically certain Ising-like structure of some eigenvalues in the spectrum 
of these Hamiltonians. In ref. 14 and 15 the M =  3 case was solved analyti- 
cally and this structure was shown to hold for all eigenvalues. This Ising- 
like form of eigenvalues was later rigorously established by Davies tg~ to be 
a consequence of Onsager's algebra; Davies proved that all eigenvalues of 
a Hamiltonian of the form (4) defined in a finite-dimensional Hilbert space 
fall into multiplets parametrized by two real numbers 0t, fl, positive integer 
ii, n real numbers 0~, and 11 nonnegative integers s~; eigenvalues which 
belong to such a multiplet are given by the formula 

n 

o~+kfl+ ~.4mj(l+kZ+2kcosOj) t/2, m j = - s j ,  --Sj"I-1 . . . . .  Sj (9) 
j = l  

Classification of the finite-dimensional representations of Onsager's 
algebra which leads to this form of the eigenvalues was carried out by 
Davies 19) and subsequently by Roan. (~~ 
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Onsager's algebra by itself does not define the parameters {a, fl, 0i, s~} 
entering into the eigenvalue formula (9). To find these for a given represen- 
tation of the generators Ao, A~ in some Hilbert Space aug, one needs to find 
the decomposition of 3/g into irreducible subrepresentations of Onsager's 
algebra.(9'~7) 

For the superintegrable chiral Potts Hamiltonians given by (8) the 
complete spectrum of eigenvalues has been found in ref. 15 for the three 
state case M =  3 with the aid of a certain cubic relation satisfied by the 
transfer matrix of the chiral Potts model. For general M the eigenvalues of 
the ground-state sector were obtained in ref. 12 by use of an inversion iden- 
tity for the same transfer matrix; in ref. 16 this result was extended to other 
eigenvalues. Further results related to the superintegrable chiral Potts 
model can be found in ref. 18. 

Now we come to the motivation and the subject of the present paper. 
Since the work of Onsager it has been known that there exists an intimate 
relationship between Onsager's algebra and sl(2). This relationship was 
clarified by Roan, (~~ who built on the earlier work of Davies. (8"9) Roan 
showed that Onsager's algebra given by (5), (6) [or  equivalently by 
(1)-(3)-I is isomorphic to the fixed-point subalgebra of sl(2) loop algebra 
~(sl(2))  (or alternatively of its central extension A]~); ref. 19) with respect 
to the action of a certain involution. Indeed one can easily guess that there 
should be a connection between Onsager's algebra and the Kac-Moody 
algebra A] ~) looking at the Dolan-Grady relations whose left-hand sides 
coincide with the left-hand sides of the Serre relations for A~l). (19) 

This obviously raises the question of whether one can find a 
generalization of Onsager's algebra related in some way to .~(sl(N)) for 
N>_-3 and to other loop or Kac-Moody algebras. In particular, can one 
find some generalizations of the Dolan-Grady conditions (5), (6) leading 
to integrability in the sense of existence of infinite series of integrals of 
motion in involution? 

The aim of this paper is to propose such a generalization related to 
sl(N) loop algebra for N~> 3. We reserve the discussion of the generaliza- 
tions related to loop algebras over other classical Lie algebras for a future 
publication. In order to avoid possible confusion we note that N here 
stands for the rank of the Lie algebra and not for the number of states in 
the chiral Potts model, which was denoted by M above. Let us summarize 
the results. We consider Hamiltonians of the form 

H=klel+k2e2+...  +kNe N, N>~3 (lO) 

where k; are some arbitrary numerical constants and e i are linear 
operators. 
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We find that if the operators ei satisfy certain commutation relations 
[generalized Dolan-Grady relations given by the formulas (11)-(12) 
below], then the Hamiltonian H is a member of an infinite family of 
mutually commuting integrals of motion [ see formula (48)]. Each of these 
integrals is linear in the coupling constants k; and is explicitly expressed in 
terms of e;. This property follows from the fact that the Lie algebra 
generated by e; subject to the relations (11), (12) [we call it the sl(N) 
Onsager's algebra and denote it by tiN] is isomorphic to the fixed-point 
subalgebra of sl(N) loop algebra under the action of a certain involution. 

The important problem is to find examples of interesting Hamiltonians 
of the form (10). The only example of a Hamiltonian satisfying the 
generalized Dolan-Grady relations that we have been able to find so far is 
the Hamiltonian of an inhomogeneous periodic Ising chain of length L. To 
write down such a Hamiltonian we first define a sequence of operators 

i .,- i _- _- k = l ,  2 ..... L 

Then we take the operators e~ entering into the Hamiltonian to be given by 
e i=  g,. for i =  1, 2 ..... 2L. These operators satisfy (11), (12) for the sl(2L) 
Onsager's algebra. After substitution of these operators into (10) we get the 
completely inhomogeneous transverse Ising chain with inhomogeneities k;. 
If we take 2L = m N  for some integer m, then defining the operators e; 

- -  ~ = ~ m  - -  1 by e i - ~ . =  0 gNs+i for i = 1 , 2  ..... N, we get a representation of sl(N) 
Onsager's algebra. The Hamiltonian corresponding to this representation is 
the Hamiltonian of the transverse Ising chain with periodic inhomoge- 
neities. These Hamiltonians have been known for a long time to be free- 
fermionic, c2~ So the outstanding unsolved problem is to find represen- 
tations of sl(N) Onsager algebra that give rise to models that cannot be 
mapped onto free fermions, or to prove that such representations do not 
exist. 

Now we outline the contents of the paper. In Section 2 we give the 
definition of the main object of our study: sl(N) Onsager's algebra, which 
we denote by tiN. We specify the algebra by giving N generators and a 
finite number of defining relations that generalize the Dolan-Grady condi- 
tions. In Section 3 we discuss an involution of the sl(N) loop algebra and 
its fixed-point subalgebra ~'N; as we shall see later, this subalgebra is 
isomorphic to tiN. In order to prepare the proof of this isomorphism in 
subsequent sections we introduce two convenient bases in ~N" In Section 4 
we study the structure of the algebra dN and prove a proposition which 
gives a set of elements that span dN as a linear space. We achieve this 
result by computing commutators of the generators with the elements of 
this set. In Section 5 the isomorphism of the Lie algebras dN and ~N is 
established. Due to the results established in Section 3, this gives us a basis 
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of the Algebra sen and commutation relations among the elements of this 
basis. In Section 6 the knowledge of the basis and commutation relations 
enables us to find an infinite family of mutually commuting elements in the 
Lie algebra sr The Hamiltonian (10) is one of these integrals of motion. 

2. DEF IN IT ION OF J#N--sI(N) A N A L O G  OF 
O N S A G E R ' S  A L G E B R A  

In this section we introduce the Lie algebra dN which is a generaliza- 
tion of the original Onsager's algebra to the s l (N) ,  N>~ 3 case. The relation 
of this algebra to s l ( N )  or, more precisely, to the loop algebra of Laurent 
polynomials with values in s l ( N )  will be explained later in Section 5. In 
order to define the algebra ~r it is convenient to consider the Dynkin 
graph of the type A~)_~: 

N 

1 2 3 4 N - 1  

We label the vertices of this graph by i ranging from 1 to N,  i + N =d~r i. 
To a vertex with a label i we attach a letter e,.. Then we define dN to be 
a complex Lie algebra generated by the letter eg, i = 1, 2 ..... N, subject to the 
following defining relations: 

[ei, [ei, ej] ] = ej if i and j  are adjacent vertices ( 11 ) 

[e~, ej] = 0 if i and j  are not adjacent (12) 

As a linear space the algebra d N is a linear span of all multiple com- 
mutators of e; between themselves taken modulo the relations (11), (12). 

Let us now introduce some notations. We shall often be working with 
multiple commutators nested to the right, that is, expressions of the form 
[ak l ,  [a, , . ,  [ak3 ..... [ a k . , _  I, ak,,] "'" ] ] ] ,  where ak, are some elements in the 
Lie algebra tiN. For such a commutator we shall use the notation 

[ ak, ,  [ ak 2, [ ak  3 ..... [ ak, ,_, ,  ak,,] "'" ] ] ]  af=r [ ak , ,  ak 2, ak3,..., ak,,_, , ak,,] 

In multiple commutators in which the generators el appear, we shall 
replace the symbol e,. by i, for example, 

[e5, [e , ,  [e2, e s ] ] ]  d~f [5, 1, 2, 5] def [5, [1, 2, 5] ]  def etc. 
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Now we define elements of dN which will play an important role in the 
subsequent discussion. These elements are denoted by Sk(r) and are defined 
as follows: 

S k ( r ) ~ r [ k , k + l , k + 2  ..... k + r - 1 ] ;  k = l , 2  ..... N, r = 1 , 2 , 3  .... 

(13) 

We shall call such an element a strhTg of length r. Strings are cyclic in their 
subindices: Sk+N(r)= Sk(r). Strings of length 1 are the generators of tiN: 
St( 1 )= ek. The string of length 0 is by convention equal to zero. As we will 
see in Section 4, the whole algebra dN is spanned by strings as a linear 
space. Strings are linearly independent except that the sum of all closed 
strings (i.e., strings whose length is divisible by N) of a given length 
vanishes. This will be established in Section 5. 

The algebra zr N has an automorphism of order N which we will use 
later. This automorphism, which we denote C, is defined by cyclic permuta- 
tion of the generators: 

C :  e i ~ e l +  1 (14) 

The automorphism C is quite useful in computations of commutators, since 
the action of this automorphism on strings is again a cyclic permutation: 

C: Si(r) ~ Si+ l(r) (15) 

The obvious questions one can ask about the Lie algebra dN are: 
What is a basis of this algebra and what are commutation relations among 
elements of this basis? These questions are answered in Sections 4 and 5. 
There we establish the isomorphism between dN and the Lie algebra ~'N 
which we define and describe in the next section. 

3. THE LOOP ALGEBRA ~(sl(N)), ITS INVOLUTION, AND THE 
FIXED-POINT SUBALGEBRA ~N 

As we shall see later, the Lie Algebra dN introduced in the previous 
section is closely related to ~(s l (N)) ,  the sl(N) loop algebra. In this section 
we describe a certain involution co of &/'(sl(N)) and the Lie subalgebra ~ 
of LesI(N)) on which the action of co is reduced to the identity ("fixed-point 
subalgebra" of co). In subsequent sections we prove thatL the algebras dN 
and ~r are isomorphic and we describe this isomorphism. 

The sl(N) roop algebra . Le ( s l (N) )=C[ t , t - l ] |  has the basis 
{F ~n) H~ '~ l<<.i#j<~N; l~<k~<N--1; n = 0 ,  +1,  +2  ..... In the N x N  
matrix realization of sl(N) the elements of this basis have the explicit form 

E~.'.') = t"F... ~(") - t"H~ t"(Ekk -- Ek+ ~.k+ ~) 
9 - - - t j ~  A .  k - -  
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where Ekl is an N x N matr ix  all of  whose entries are zero except entry (kl), 
which is equal to 1. The loop algebra has a linear involutive au tomorph i sm 
co, co 2 =  id, given by 

E ( ' )  --* ( -- 1 ~i+.i+ l +,,N E I -,,) co: --v , --ji (16) 

09: H~i") ~ ( - 1 ) l + " N  Hli - ' )  (17) 

This involutive au tomorph i sm co is a product  of two involutions: o91 and 
coz. The first of these is an involution of the algebra of  Laurent  poly- 
nomials: 

col: t" --+ ( - - 1 ) "N  t - "  

The second one is an involution of s l (N):  

o92: E o - - + ( - 1 ) i + J + l  Eji 

092: H i ~  --Hi 

It is easy to convince oneself that  the subspace ~ N e S f ( s l ( N ) )  on 
which the involution co acts as identity opera tor  is a Lie subalgebra. We 
can easily find the basis of this fixed-point subalgebra ~'N; it is formed by 

~Z I''' G~")} : vectors ~.. 0 ' 

(n) = (n) 1 + n N  gj~n), 
A o E o + ( - 1 )  ;+j+ 

l < ~ i < j < ~ N ,  n = 0 , - I - l , + 2  .... (18) 

G'i . )= H' / , )  + ( _  I ) ',N+ ' H~- , , ) ,  

I < ~ i < ~ N - l ,  n = l , 2  .... (19) 

The commuta t ion  relations of  ~N in the basis {A~ '), G'i m} follow 
immediately from the commuta t ion  relations of  ~ ( s l ( N ) ) :  

/jn Afn)q A ACre+n) A ACre+n) 
[A '), "'k+ J = ~')k+'~t - -v , ' / ' k j  

_+_ 6i/< ( _ l ) i+ j+  1 +,,,N O(j  < l)  AJ~ . . . . .  ) 

+ 6ik( -- 1 )i+t+,,+~ 0( l  < j )  A ~? . . . .  ) 

-C 6j/( -- 1 )1< +1+ 1 +nN O(i < k )  Alik . . . .  ) 

+ 6j+( --  1 )i+++.,N O(k < i)  +~<ki ..... .  ) 

j - - I  

+6~k6~+(--1) ++j+l+ 'N  ~. G!,. ... . . .  ), m > ~ n  (20) 
s = i  
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[ G~')' A(") l  = J , -  51~ + 51~+1) 

ta(.,+,,) t i~mN ,~( .. . . .  )~ (21) 

[GI'), G) ")3 =0 (22) 

Here 5 i k  is the Kronecker  symbol and O(x) is the following function: 
O(x) = 1 (0) if x is true (false). 

We will also need another  basis in the algebra ~N. We shall denote the 
elements of  this new basis by symbols ~,.(r), where r = 1, 2 ..... and 1 ~ i ~< N 
if r is not  divisible by N, and 1 ~< i ~ N - 1  if r = Nm for some positive 
integer m. The explicit expressions for the elements S~(r) are as follows: 

~gii+kJt-(--l) k+l Ei+ki if i+k<~N 
S i ( k ) = l t E  J-t l~k+' t'-I~ (23) 

k. i . i + k - - N ' t - -  1 x . , i + k _ N ,  i i + k > ~ N + l  

for 1 <~k<~N-- 1; 

( [ t - - ( - - l )N  t - t ] [ t  +(--1)N t - l ]  " - '  

x[E~+k+(--1)kE~+k~] if i+k<<.N 
S i ( N m + k ) = ) [ t - - ( - - 1 ) ~ ' t - l ] [ t + ( _ l ) N  t - ' ] . , - ' [ tE i i+k_  N 

+(--1)kt--'Ei+k_N.~] if i + k ~ N + l  

(24) 

for 1 <~k <~N-- 1, m>~ 1; 

Si(Nm) = [ t - - ( - - 1 ) N t - l ] [ t + ( - - 1 ) U t - l ]  "'-~ (E.--E,+Ij+,)  (25) 

for m >/1, 1 ~< i ~< N. Note  that the elements defined by the last formula are 
linearly dependent: Sl(Nm) + S2(Nm) + ... + S N ( N m )  = O. 

We can express the elements of  the basis ~A ~') G~ '')} in terms of  the t - - / j  ' 

basis {Si(r)} with the aid of  the recursion relations 

A~)= 
A,O-I) = 

f - - m - -  1) 
A U 

Si(j- i) 
(_I)I+N+i+jSj(N+j_i) 
( _ l ) N  A(.,-21 . --ij +qbi(Nm, j - - i )  

-- ( -- 1) ;+j  qbj(N(m -- 1), N+ i - j )  

( _  N t - . ,+ l )  1)raN 1) A~j + ( -  ~ i ( N ( m - 1 ) , j - i )  

_ ( _ 1)1,.+ I~N+i+j ~j(Nm, N+ i - j )  

q~i(Nm, O) GI.,)= 

822/82/I-2-7 
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for m >/1. The vectors cbi(Nm, s) are given in terms of S/(r) by the formula 

�9 i(Nm, s)= ~ c(m,r) Si(Nr+s), O<~s<~N-1 
r = l  

where the coefficients c(m, r) are defined by the recursion relation: 

c(m + 1, r)=(1 --Jlr)  c(m, r-- 1)--(1 -- J,,r)(1 - -J , ,+  lr)(--1)Nc( m -  1, r) 

c(1, 1)=  1 

The basis of vectors {~i(r)} which we described in this section will be 
used in the proof of an isomorphism of the algebras ~N and ~N. 

4. STRUCTURE OF THE ALGEBRA "-~N 

In this section we study the structure of the algebra dN in some detail. 
The results obtained here will be extensively used in Section 5 to establish 
isomorphism of the algebras dN and ~N, The main result that we establish 
is formulated as the following proposition: 

Propos i t ion  1. The Lie algebra dN is spanned by the set of strings 
{Si(r)}, 1 <~i<<.N, r= 1, 2 ..... as a linear space. 

Notice that it is not true that all strings are linearly independent. 
In order to prove this proposition we shall first compute commutators 

of the generators of ~N with all strings, that is, the commutators of the 
form 

[e,, Sy(r)] aZ-r [ i ,  SyCr)] 

where l<~i, j~<N and r = l , 2  ..... Due to the existence of the cyclic 
automorphism C it is sufficient to compute [ l, Sj(r)] for all j and r; the 
rest of the commutators [i, Sj(r)]  are then immediately obtained by 
application of C. The result which we get computing [1, Sj(r)] is 
summarized in the following lemma. The distinctive feature of the strings 
which emerges from the result of the lemma is that a commutator of a 
generator with a string is again a string. 

Lemma 1. The following relations hold in dN for m ~ 0 :  [1, 
Sk(Nm + r)]  = 
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1. If l~<k~<N, l <<.r<~N-l, andk+r<~N, 

(am) -2Sl(Nm) when k = 1, r = 1 

(b.,) Sz(Nm+r-1)  when k = l , r ~ > 2  

(c m) Sl (Nm+r+l)  when k = 2  

(d.,) 0 when k i> 3 

2. I f l~<k~<N, l<<.r<~N-l, andk+r>~N+l,  

(era) - S k ( N m + r + l )  when k + r = N + l ,  k4:2 

(fm) S](Nm+r+ 1) when k + r = N + l , k = 2  

(g.,) - S k ( N m + r - l )  when k + r = N + 2  

(h.,) 0 when k+r>~N+3 

3. I f l<~k<~Nandr=N, 

(i.,) --2SI(Nm+ N+ I) when k = l  

(j.,) S](Nm+N+I)  when k = 2  

(k.,) SI (Nm+N+I)  when k = N  

(1.,) 0 when 3<~k<~N-1 

Proof. We shall prove the lemma using induction in m. First we 
establish the base of the induction by proving relations ao through lo, and 
then show that relations a,, through lm entail a, ,+l through l,,+]. At each 
elementary step we employ either the defining relations of dN or the Jacobi 
identity or skew symmetry of the commutator. The proof given below is 
literally valid for N/> 4. The idea of the proof for N = 3 is completely the 
same, while precise wording (e.g., ranges of variation of various subindices) 
of some of the statements encountered in the course of the proof given 
below needs to be slightly changed. Since these changes are obvious and do 
not require any new ideas as compared to the case N~>4, we omit the 
proof for the case N =  3. 

1. Proof of the induction base. We compute the commutator [ 1, Sk(r)] 
when 1 <<.k<~N and 1 ~r<~N. 

Case ao. ~ = 1 ,  r = l :  [1, $1(I)] =def[1, 1] =0=def--2Sl(0) 

Case do. k>>.3, k+r<~N,r<<.N-l: 

def def x =  [1, Sk(r)] = [1, k , k + l  ..... k + r - 1 ]  
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Since k>~3 and k + r < ~ N - 1 ,  1 
Hence x = 0. 

Case bo. 

Since r ~ N -  1 
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commutes with all k, k + l,..., k + r - l .  

k - - l ,  r~>2, k+r<~N: 

def def 
x = [1, Sk(r)] = [1, 1,2 ..... r ]  

x = [ 1 ,  [1, 2] ,  3,..., r ]  = [ 2 , 3  ..... r ]  ~r S 2 ( r -  1) 

Caseho. k+r>_.N+3, r<<.N-l: 

x ~r [1, Su(r)] ~r [1, k , k +  1 ..... N, 1 , 2 , . . . , k + r - l - N ]  

Since 2 <<.k + r -  1 - N  ~ N - 2 ,  

x = [ k , k + l  ..... N - I , [ 1 ,  N ] , I , 2  ..... k + r - l - N ]  

+ [ k , k + l  ..... N, 1, 1,2 ..... k + r - l - N ]  

Denote the first (second) summand in the right-hand side of  the above for- 
mula by a (b). Then we find that 

a= - [ k , k  + 1 ..... N, 2 ..... k + r -  l - N ]  

+ [ k , k +  1 ..... N - I ,  1, [1, N ] ,  2 ..... k + r - l - N ]  

= - [ k , k +  1 ..... N,  2 ..... k + r -  1 - N ]  

+ [ k , k +  1 ..... N - l ,  1, 1, N, 2 ..... k + r - l - N ]  

- [ k , k +  1 ..... N - l ,  I , N ,  1 , 2 , . . . , k + r - - l - N ]  

The first two summands above and the commuta to r  b vanish since N 
commutes  with all elements standing on its right in these expressions. 
Hence a = - x ,  because the leftmost element 1 in the third summand  above 
commutes  with all elements standing on its left. Therefore x = a + b = - x  
and x = 0. 

Caseeo. k + r = N + l , k > ~ 3 ,  r<~N-l :  

[l, Sk(r)] ~r [ l , k , k +  1 ..... N - 1 ,  N] 

= - [ k , k + l  ..... N - 1 ,  N, 1] ~ r _ S k ( r + l )  
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Case go. k + r = N + 2 ,  r<<,N-l: 

[1, Sk(r)] dr [1, k , k  + l , . . . ,N-1 ,  N, 1] 

= - [ k , k + l  ..... N - l ,  1, 1, N] 

= - [ k , k +  1 ..... N -  1, N] dcj --Sk(r-- 1) 

Case io. k = l , r = N :  

def def 
x = [ I ,S] (N)]  = [1, 1,2 ..... N] 

= [ 1 ,  [1,2] ,  3 ..... N ] - - [ 1 ,  2 ..... N, 1] 

Denote the first (second) summand in the right-hand side of the above 
formula by a ( - b ) .  Then 

a =  [2, 3,..., N] + [[1, 2], 1, 3,..., N] 

= [ 2 , 3  ..... N] - [ 1, 2, 3,..., N, 1 ] + [ 2 ,  1,3 ..... N, 1] 

= --[1, 2, 3,..., N, I]  = - b  

Hence 

x = a - b =  -2[1 ,2 ,  3,..., N, 1] ~f - 2 S ~ ( N +  1) 

Case ko. k = N, r = N: 

x ~r [I ,  Sze(N)] ~r [1, N, 1, Sz(N-- 2)] = a + b  

where a =  [[1, N], 1, $2 (N-2 )  ] and b =  [N, 1, S I ( N -  1)]. Using the 
defining relations of ~r and the Jacobi identity, we find that 

a= - [ N ,  S z ( N - 2 ) ]  + [1, 1, N, S2 (N-  2)] - [1, N, 1, S u ( N -  2)] 

Using the already proven relation eo and the automorphism C, one finds 
that [N, S 2 ( N - 2 ) ] = - - S u ( N - 1 ) .  Hence a = S E ( N - 1 ) - [ 1 ,  S I ( N ) ] -  
[1, Su(N)]. The relation i 0 then leads to a = g z ( N - 1 ) + 2 S I ( N +  1 ) - x .  
The already proven relation b0 gives b=[N,  $ 2 ( N - 2 ) ] = - S 2 ( N - 1 ) .  
Hence we obtai~a x = a + b = 2 S ] ( N +  1 ) - x ,  and x = S I ( N +  1). 

Case Io. 3 <~ k <~ N - 1 ,  r = N: 

[1, Sk(N)] = [1, k, Sk+,(N-- 1)] = [k, 1, Sk+~(N- 1)] = 0  
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since the internal c o m m u t a t o r  in the last formula  vanishes due to the 
already proven relation h 0. 

The rest of  the cases, i.e., Co, f0, and Jo, are immediate  by the definition 
of the elements Si(r). 

The induction base is proven. 

2. Now we prove the induction step: the relations a,,,+~ ..... 1.,+~ 
follow from the relations a .. . . . .  1.,. 

Case a., + i. k = 1, r = 1: 

def x = [1, S~(N(m+ 1) + 1] dej [1, 1, 2, S 3 ( N m + N -  1)] 

= [1, [1, 2] ,  S 3 ( N m + N -  1)] + [1, 2, 1, S 3 ( N m + N -  1)] 

Denote  the first (second) summand  in the r ight-hand side of  the last for- 
mula  by a (b). Then using the defining relations and the Jacobi  identity, we 
obtain 

a = [ - 2 ,  S 3 ( N m + N -  1)] + [ [ 1 ,  2] ,  1, S 3 ( N m + N -  1)] 

Denoting the second summand  in the last formula  by a 2 and using the 
identity g., to compute  the c o m m u t a t o r  [ 1, S3(Nm + N -  1 )],  we arrive at 
the equat ion 

a 2 =  - [ 1 ,  2, S 3 ( N m + N - 2 ) ]  + 1'2, 1, S3(NmN--2)]  

Now we apply the identity e., together with the definition of a string and 
find that  az = - S ] ( N m  + N) -- I2,  S3(Nm + N -  1 )]. 

Using g.,, one gets b = --S1(Nm + N). Putt ing expressions for a and b 
together, we find 

x = a + b = - 2SI(N(m + 1 )) 

Case d . ,+ l ,  k~>3, k +r<~N, r < ~ N - 1 :  

def 
x = [1, Sk (N(m+ 1 ) + r ) ]  d~f [1, k, k +  1 ..... N, 1, 2 ..... k -  1, Sk(Nm + r ) ]  

The relation d., gives 

x =  [ k , k +  1 ..... N - -  1, [1, N ] ,  1,2 ..... k -  1, S k ( N m + r ) ]  

+ [ k , k +  1 ..... N, 1, [1, 2] ,  3 ..... k - l ,  S k ( N m + r ) ]  
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Denote the first (second) summand in x by a (b). Then the defining rela- 
tions, the Jacobi identity, and dm give 

b= [k, k+  1,..., N, 2, 3 ..... k -  1, Sk(Nm + r ) ]  

a =  - b + [ k , k +  1,..., N -  1, 1, [1, N] ,2 ,  3 ..... k -  1, Sk(Nm+r)] 

For x we obtain 

x = a + b = [ k , k + l  ..... N - l ,  1, I, N, 2, 3 ..... k - l ,  Sk(Nm+r)] 

- [ k , k +  1,..., N -  1, 1, N, 1,2 ..... k - l ,  Sk(Nm+r)] 

Since in the second summand above the leftmost 1 commutes with all 
elements standing on its left, we can carry this generator 1 to the very left. 
In the first summand above, N commutes with all elements standing on its 
right up to Sk(Nm + r). Hence we obtain 

2 x = [ k , k + l  ..... N - l ,  1, 1,2,3 ..... k - l , N ,  Sk(Nm+r)] 

Let us now compute the commutator [N, S~(Nm + r)]  standing to the very 
right in the above expression. The identities d,,, e,, together with the applica- 
tion of the automorphism C give [N, Sk(Nm + r)]  = --J~+k, NSk(Nm + r + 1). 
Therefore 

2 x =  -Jr+, .N[k ,k  + l ..... N - l ,  1, 1 ,2 , . . . , k - l ,  Sk(Nm+r + l)] 

= --Jr+k.N[k, k+ 1,..., N -  1, 1, S t ( N m + r + k ) ]  

= --Jr+k,N[k, k + 1 ..... N -  1, 1, N -  1, Sl(Nm + N)] 

The relation 1., applied (together with the automorphism C) to the com- 
mutator [ N -  1, S~(Nm + N)] gives x = 0. 

Case b. ,+l ,  k =  1, r>~2, k+r<~N: 

[1, S , (N(m+ l)+r)]  = [ 1 ,  1,2, S3(N(m+ l ) + r - 2 ) ) ]  

= [1, [1, 2], S3(N(m+ 1 ) + r - 2 ) ]  

+ [1, 2, 1, S3(N(m+ 1 ) + r - 2 ) ]  

The commutator [ 1, S3(N(m + 1)+  r -  2)] is equal to zero either because 
of the already proven relation d.,+] or, when r = 2, because of the relation 
1.,. Consequently 

[1, S~(N(m+ 1 ) + r ) ]  = [2, S3(N(m+ 1) + r - 2 ) ]  d~__r S2(N(m+ 1 ) + r +  1) 
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Case h , ,+ l ,  k +r>~N + 3, r<~N-  1: 

def 
x = [1, Sk(N(m+ 1 ) + r ) ]  

= [ 1 ,  k , k +  1 ..... N, 1 ,2 , . . . , k - l ,  Sk(Nm+r)] 

By virtue of  the Jacobi  identity, 

x =  [ k , k +  1 ..... N - l ,  [ I ,  N] ,  1, 2 ..... k -  1, Sk(Nm+r)] 

+ [ k , k +  1 ..... N - 1 ,  N, 1, 1,2 ..... k - l ,  Sk(Nm+r)]  

Let us denote the first (second) summand  in the r ight-hand side of the 
above formula by a (b). Due to the Jacobi  identity and the defining 
relations, 

a =  - [ k , k +  1 ..... N -  1, N, 2, 3 ..... k -  1, Sk(Nm+r)] 

+ [ k , k +  I ..... N - -  1, 1, [1, N] ,  2, 3 ..... k -  1, Sk(Nm+r)]  

Denot ing the first (second) summand  in the r ight-hand side of  the above 
formula by al (a2) and using the definition of a string, we find a~ = 
[ k , k + l  ..... N - l ,  N, S 2 ( N m + r + k - 2 ) ] .  Then applying the already 
proven relation dm+~ and the au tomorph i sm C to compute  the com- 
muta to r  IN,  S2(Nm + r + k - 2 ) ] ,  we obtain a~ = 0 .  For  a2 we have 

a2 = [k ,k  + 1 ..... N -  1, 1, 1, N, S2(Nm+r + k - 2 ) ]  

- [ k , k +  1 ..... N - l ,  1, N, 1,2 ..... k - l ,  Sk(Nm+r)] 

The first term in this expression for a2 is equal to zero because IN,  
S2(Nm + r + k - 2 ) ]  = 0, while the second term is equal to - x .  

Applying the already proven relation bm +1 and the same reasoning as 
in the computa t ion  of a~, we find that  b = 0 .  Therefore x = a ~ + a 2 + b =  
- -x;  x = O .  

Case e.,+~, k + r = N  + 1, k >~3, r < . N - 1 .  
Applying the Jacobi  identity, we obtain 

def 
X 

def 

[1, Se(N(m+ 1) + r ) ]  

[1 ,k ,k  + l,...,N, 1,2 ..... k -  l, Sk(Nm+r)] 

[ k , k +  1 ..... N -  1, [1, N ] ,  1, 2 ..... Sk(Nm+r)] 

+ [k , k+  1 ..... N, 1, [1, 2] ,  3 ..... k -  1, Sk(Nm+r)] 

+ [ k , k + l  ..... N - 1 ,  N, 1,2 ..... k - l ,  1, Sk(Nm+r)]  
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Let us denote the three summands  standing in the r ight-hand side of  the 
last equality in the above formula  by a, b, c. Using the defining relations, 
the Jacobi  identity, and the definition of a string, we come to the equality 

a =  - I - k ,  k +  1 ..... N -  1, N, S 2 ( N m + r + k - 2 ) ]  

+ [ k , k +  1 ..... N - l ,  1, 1, N, 2, 3 ..... S k ( N m + r ) ] - x  

Denot ing the first (second) summand  in the above expression for a by a] 
(a2) and using the relation g.,, we find that  a ] = [ k , k + l  ..... N - l ,  
S 2 ( N m + N - 2 ) ] ,  whereas applying the definition of a string and the 
relation b.,, we find that  a2 = - a ~ .  Therefore a = - x .  

For  b we obtain  

b de__r [k,  k +  1 ..... N, 1, [1, 2]  ..... k -  1, Sk(Nm+r)]  

= [ k , k + l  ..... N, l, 1,2 ..... k - l ,  Sk(Nm+r)] 

- [k,  k +  1 ..... N, 1, 2, 1, 3 ..... k -  l, Sk(Nm+r)] 

Denote  the first (second) summand  in the r ight-hand side of the above 
equality by b~ ( - - b 2 ) .  Then the definition of a string and i,, enable us to 
write 

b~=[k ,k  + l ..... N, 1, S] (Nm+r + k - 1 ) ]  

= - 2 [ k ,  k + 1 ..... N, S](Nm + N +  1 )] 

= -2Sk(N(m + 1) + r +  1) 

whereas %, applied to the c o m m u t a t o r  [ l, S3(Nm + i"+ k - 3 ) ]  entering b2 
gives b2 = --Sk(N(m + 1 ) + r + 1 ). 

The relation %, applied to the c o m m u t a t o r  [ l, Sk(Nm + r ) ]  entering 
c leads to c = b 2. Finally, 

x = a + b + c =  - x - 2 S k ( N ( m +  1 ) + r -  1) 

x =  --Sk(N(m+ 1 ) + r +  1) 

Caseg,,+,. k + r = N + 2 ,  r<~N-1.  
Applying the Jacobi  identity, we obtain 

def 
x = [1, Sk(N(m+ 1 ) + r ) ]  

de__r [1 ,k ,  k +  1 ..... N, l, 2,..., k -  1, Sk(Nm+r)  ] 

= [ k , k +  1 ..... N - l ,  [1, N ] ,  1,2,...,Sk(Nm+r)] 

+ [ k , k +  1 ..... N, 1, I f ,  2] ,  3 ..... k -  1, Sk(Nm+r)] 

+ [ k , k +  1 ..... N -  1, N, 1,2 ..... k -  1, 1, Sk(Nm+r)] 
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Let us again denote the three summands  standing in the r ight-hand side 
of  the last equality in the above formula  by a, b, c. Using the defining 
relations, the Jacobi  identity, and the definition of a string, we come to the 
equality 

a =  - [ k , k  + 1 ..... N -  1, N, S 2 ( N m + r  + k - 2 )  ] 

+ [ k , k +  1 ..... N -  1, 1, 1, N, S 2 ( N m + k + r - 2 ) ] - x  

Using the relation 1,, and the au tomorph i sm C to compute  the c o m m u t a t o r  
IN,  S2(Nm + r + k - 2)],  we arrive at a = - x .  

For  b we obtain 

b def [ k , k +  1 ..... N, 1, [1, 2] ,  3 ..... k - 1 ,  S k ( N m + r ) ]  

= [ k , k +  1 ..... N, 1, 1,2 ..... k - l ,  S k ( N m + r )  ] 

- [ k , k +  1 ..... N, 1, 2, 1, 3 ..... k -  1, S k ( N m + r ) ]  

= [ k , k + l , . . . , N ,  1, S ~ ( N m + N + I ) ]  

- [k, k +  1 ..... N, 1, 2, 1, S 3 ( N m + N -  1)] 

Now we use the already proven relation a m +~ to compute  the c o m m u t a t o r  
[ 1, S~(Nm + N +  1)] inside the first bracket  above and the relation g,, to 
compute  the c o m m u t a t o r  [ 1, S3(Nm + N - 1 ) ]  inside the second one. This 
gives b = - S k ( N ( m  + 1 ) + r - 1 ). 

Applying g,,, to the c o m m u t a t o r  [1, Sk (Nm + r ) ]  entering c, we get 
c = b. Finally, 

x = a + b + c =  - x - 2 S , ( N ( m +  1) + 1 " -  1) 

x = - S k ( N ( m  + 1 ) + r - 1 ) 

Case i,,,+ l. k = l, r =  N: 

def 
x = [1, S ~ ( N ( m +  1 ) + N ]  

a~__r [1, 1, 2, S3(N(m + 1 ) + N - 2 ) ]  

= [ 1 , [ 1 , 2 ] , S 3 ( N ( m + I ) + N - 2 ) ] + [ I , 2 , 1 ,  S 3 ( N ( m + I ) + N - 2 ) ]  

Denot ing the first (second) summand  in the r ight-hand side of  the last for- 
mula  by a (b) and using the defining relations, we obtain 

a =  [2, S 3 ( N ( m +  1 ) + N - 2 ) ]  + [ [ 1 ,  2] ,  1, S 3 ( N ( m +  1 ) + N - 2 ) ]  
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Applying the already proven relation e.,+l to compute the commutator [ 1, 
S3(N(m + 1) + N - - 2 ) ] ,  one gets 

a =  [2, S3(N(m+ 1 ) + N - 2 ) ] - S 1 ( N ( m  + 1 ) + N +  1) 

+ [2, 1, S3(N(m+ 1 ) + N -  1)] 

Transforming the last summand with the aid of the already proven relation 
g. ,+t ,  we arrive at a =  - - S I ( N ( m +  1 ) + N +  1). 

Application of e.,+~ to b gives b = a .  Hence x = a + b =  
- 2 S I ( N ( m  + I) + N +  1). 

Case 1.,+1. 3 < ~ k < ~ N - l , r = N :  

[1, Sk(N(m+ 1 ) + N ) ]  = [k, 1, Sk+~(N(m+ 1 ) + N -  1)] = 0  

In virtue of the already proven relation h.. +1. 

Case k., + l . k = N, r = N: 

clef x = [1, S N ( N ( m + I ) + N ) ] = [ 1 ,  N, 1, S 2 ( N ( m + I ) + N - 2  

= [ [ I , N ] ,  1, S 2 ( N ( m + I ) + N - 2 ) ]  

+ [ N ,  1, 1, Sz (N(m+ I ) +  N - 2 ) ]  

Denoting the first (second) summand in the right-hand side of the last 
equality by a (b) and using the defining relations, we obtain 

a= --[N,  S2(N(m+ 1 ) + N - - 2 ]  + [1, 1, N, S2(N(m+ 1 ) + N - 2 ) ] - x  

Transforming the second summand in the above expression for a with the 
aid of the already proven relations e., + 1 and i., + 1, we arrive at 

a= - [ N ,  S2(N(m+ 1 ) + N - - 2 ) ]  + 2S2(N(m+ 1 ) + N +  l ) - - x  

For b we have b = [N, 1, S~(N(m + 1) + N +  1)]. Taking into account 
the already proven relation bin+l, one then gets b =  [N, S2(N(m+ 1)+  
N -  2]. Finally, 

x = a + b =  - x  + 2S l (N(m+ 1 ) + N +  1) 

. ' x=S, (N(m+ I ) +  N +  I) 

The remaining cases c., + 1, f . ,  + ~, J., + ~, are direct consequences of the 
definition of the strings. 

Thus the induction step is proven. II 
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The lemma has an obvious corollary: 

Coro l l a ry .  The elements x ( m ) = a e f z ~ = l S i ( N m )  belong to the 
center of ~r 

Proof .  It follows at once from the statements i , , ,  j , , ,  k,,, and 1,, of the 
lemma by appication of the automorphism C that [i, x(m)] = 0, 1 <~ i~< N, 
m>~l. II 

Now we can proceed further and turn to the proof of Proposition 1. 
First of all we notice that any multiple commutator of ei's can be converted 
with the aid of the Jacobi identity into a linear combination of commu- 
tators nested to the right, i.e., commutators of the form [i~, i z, i 3 . . . . .  i n , - I ,  i . ,] 
for some set of 1 ~< i k <~ N.  Let us compute the nested commutators in the 
last expression starting from the innermost one, [i . ,_ i, i . ,] ,  and going step 
by step outward. At each step of this procedure we need to compute a com- 
mutator of a generator with a string which is, according to Lemma 1, again 
a string. Therefore any commutator of the form [ i l ,  i,_, i 3 . . . . .  i , ,_  1, i,,,] is 
a string (it may be of zero length, then it is equal to 0). Thus any multiple 
commutator of the generators is a linear combination of strings (with 
integer coefficients). This finishes the proof of Proposition 1. 

In principle now we could find commutation relations among all 
strings using the Jacobi identity and the result of Lemma 1. Such a com- 
putation, though, is rather cumbersome and we did it only for N = 3. For 
arbitrary N >/3 in Section 5 we follow another route which eventually gives 
a basis of the algebra dN in terms of strings and commutation relations 
between the elements of this basis. 

5. I S O M O R P H I S M  OF THE ALGEBRAS "~N AND ~'N 

In this section we show that the algebra dN defined in Section 2 and 
the algebra ~rr defined in Section 3 are isomorphic. Lemma 1 and Proposi- 
tion 1 of the previous section are the main ingredients used to show the 
isomorphism. 

We define a linear map from djv to ~N which we call ~. First, we 
define this map on the generators of :r as follows: 

~(ei ) d=ef Si(I ), 1 <~ i ~< N (26) 

where the vectors S;(1) were defined in (23) in Section 2. 
Next, we define the map rt on the whole algebra d u  by the prescrip- 

tion 

n([a,  b]) ~f In(a), n(b)] (27) 
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It is easy to check that the vectors n(ei) satisfy the relations (11 )-(12). 
Therefore the map n: dtr --, ~ is a homomorphism of Lie algebras. Now 
we wish to find out what is the image of the algebra dN under the action 
of n. Since dN is spanned by strings, it is sufficient to find images of all 
strings, i.e., vectors n(Si(r)), 1 <~ i<<. N. Using the definition of a string and 
the prescription (27), we arrive at the recursion relation 

rc(Si(r) ) = [ .(e ,) ,  ~(S,+ i(r - I ) ) ]  (28) 

This recusion relation is supplemented by the initial conditions (26); 
therefore we can solve it, the result being 

n(S;(r)) = S~(r), l<~i<~N, r = l , 2  .... (29) 

where ,~i(r) are defined in (23)-(25). Since ~N is a linear span of the vec- 
tors ,~(r), 1 ~< i<~N, r =  1, 2 ..... we come to the conclusion that the image 
of d u  is the whole algebra ~'U: Im n[ ~,u = ~'u. Now we notice that all the 
vectors S~(r) (1 <<.i<~N, r =  1, 2,...) are linearly independent in ~Jv except 
that ~.u=~ S~(Nm)= 0 for all m/> 1. Therefore we come to the conclusion 
that the kernel of the homomorphism n is given by 

(der C{x(m)},,,~,) (30) Ker rc = linear span of {x(m)} ,, >. 1 = 

where the elements x(m)=derZ,.u= ~ S~(Nm) were defined in the corollary to 
Lemma 1. Recall that according to this corollary, C{ x(m)},,, el belongs to 
the center of the Lie algebra ~r Hence we conclude that ~'N is isomorphic 
to a central extension of ~'N by C{x(m)} , , ,~ .  In order to prove that the 
map ~ is an isomorphism, we have to show that Ker rc = 0. 

Now we have the following proposition: 

P r o p o s i t i o n  2. For all m>~l the central elements x(m) =def 
~~N= I Si( Nm ) vanish. 

Proof. To prove this proposition we first compute the commutator  
C(I, m)=d~r[Sj(NI), Sl(Nm) ] for/ ,  m~> 1. 

In virtue of Lemma 1, one has for m ~> 1 

( - 2 S ~ ( N m +  1) if k =  1 

[ k , S ~ ( N m + k - 1 ) ] = ~ - S ~ ( N m + k )  if 2<<.k<~N--1 (31) 

~ S u ( N m + N )  if k = N  

Applying the above equality and the Jacobi identity, we then get for /, 
m>~ l, l <~k <~N-1 ,  
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[Sk (N l -k  + 1), SI(Nm + k -  1 ] 

= [k, Sk + i (Nl -  k), S1(Nm + k - 1 )] 

+ ( 1 + dik. 1)[ Sk+ I(NI-- k), S1(Nm + k)] (32) 

Using the last formula repeatedly, we arrive at the equality 

C(I, m)= [ 1, S2(NI- 1), SI(Nm) ] 
N - - I  

+ 2  ~ [k, Sk+l(Nl-k) ,  S~(Nm + k -  1)] 
k = 2  

+ 2[ SN(NI-  N+ 1 ), S~(Nm + N -  1 )] (33) 

Equation (31) leads to the following equality for m >/1: 

[SN(Nl-  N +  1), S1(Nm + N -  1)] 

~ SN(N(m+ 1)) if l =  1 
= ~[N, S~(NI- N), S~(Nm + N -  1)] (34) 

[ - [ S 1 ( N I - N ) ,  SN(Nm+N)] if 1/>2 

Combining the relations (33) and (34), we come to 

C( 1, m) = [ 1, S2(N-  1 ), S,(Nm)] 
N - - I  

+ 2  ~ [k, Sk+l(N-k) ,  S l ( N m + k -  1)] 
k ~ 2  

+2SN(N(m+I)), m>_.l (35) 

C(I, m) = [ 1, S2(N-  1), SI(Nm)] 
N 

+ 2  ~ [k, S k + l ( N l - k ) , S l ( N m + k - l ) ]  
k = 2  

- 2 [ S I ( N I - N ) ,  SN(Nm+N)], m~> 1, 1/>2 (36) 

Moreover, Lemma 1 and the Jacobi identity also give the following equa- 
tion for l, m >/1: 

[ S1( NI), SI(Nm) ] + 2[ S~(NI), SN(Nm) ] 

=[I ,  Sz(NI--I) ,SI(Nm)]+2[1,  S2(NI-1),SN(Nm)] (37) 

The next step is to compute the triple commutators of the form [ i, 
Sj(p), Sk(q)] appearing in Eqs. (35)-(37). We shall do it as follows. First 
we can compute the internal commutators [Sj(p), Sk(q)] up to a central 
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element using the values of commutators [,~j(p), ~k(q)] in the algebra ,~v. 
Indeed, suppose we know that 

[Sj(p), Sk(q)] = E  t,r ~ F j; p;~.q Sl(r) 
I,r 

where t,r Fj, mk.qare known structure constants. Then since dN is a central 
extension of d u  (by the linear span of the set {x(m)}m> ~ ~), we have 

],r [Sj(p), Sk(q)] = ~ F z p;k, qgl(r) + X 
Lr  

where X is some element in the center of du .  
Next, we compute [i, Sj(p), Sk(q)] using the result of Lemma 1. 
It is straightforward to find the commutators [~j(p), Sk(q)]; their 

computation gives the following formulas for the relevant triple com- 
mutators for m >/1: 

[ 1, S,_(N-  1 ), Sl(Nm)]  = 2S1(Nm + N) 

[k, Sk+ i(N--k),  St(Nm + k -  1)] = Sk(Nm) 

[ 1, S 2 ( N -  1 ), SN(Nm)] = - S I ( N m  + N) 

[ 1, S,_(NI- 1), SI(Nm)] = 2SI(N(m + l)) - 8( - 1)N 
(38) 

•  I>~2 

[k, Sk + I(NI-- k), Sl (Nm + k - 1 )] = S~.(N(I + m)) - 4( - 1 )N 

•  l,k>~2 

[ 1, S 2 ( N I -  1), S, (Nm)]  = - 2 [  1, S 2 ( N I -  I), SN(Nm)] 

Substituting these expressions into (35)-(37), we obtain for m >/1 

N 

C(1, m ) = 2  ~ Sk(N(m+l) )de- - r2x(m+l)  
k ~ l  

C ( l , m ) = C ( l - l , m + l ) + 2 x ( l + m ) - 8 ( - 1 ) l V x ( l + m - 2 ) ,  1>~2 
(39) 

m x ( m ) = 4 ( m - - 2 ) ( - - 1 ) N  x(m--2) ,  m>~3 (40) 

This recursion relation is supplemented by two initial conditions: x(2)=  0, 
which follows from 39), and x( 1)= 0, which will be shown shortly. Solving 
the recursion relation (40) with these initial conditions, we get the desired 
result: x(m) = O. 

Now taking into account that C ( l , m ) + C ( m , l ) = O ,  we arrive at the 
following recursion relation for x(m): 
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Now we show that  x ( 1 ) =  0: 

x ( 1 ) ~ r [ 1 , 2  ..... N ] + [ 2 , 3  ..... 1 ] + . . . + I N ,  1 ..... N - - I ]  

If  N = 3, Eq. x( 1 ) =  0 is the Jacobi  identity. If  N i> 4, using the defining 
relations of  o~r we find 

[N,  1 ..... N -  1] = [ [ N ,  I ] ,  2, 3 ..... N - I ] - - [ 1 , 2  ..... N ]  

[ [ N ,  1,2 ..... k ] , k + l , k + 2  ..... N - l ]  

= [ I N ,  1,2 ..... k + l ] , k + 2  ..... N - 1 ] - [ k + l  ..... k ] ,  

k<<,N-3 

Applying the last equat ion repeatedly, we arrive at 

[N,  1,2 ..... N - l ]  

= - 1 1 1 , 2  ..... N ] -  [2, 3 ..... N, 1] . . . . .  [ N - 1 ,  N, 1,2 ..... N - - 2 ]  

The proposi t ion is proven. | 

In virtue of  Proposi t ion 2, Ker  n = 0, hence the m a p  n defined in (29) 
is an isomorphism of Lie algebras. 

6. THE H A M I L T O N I A N  A N D  THE INTEGRALS OF M O T I O N  

Now we are ready to discuss how the sl(N) Onsager 's  algebra leads to 
the existence of an infinite number  of  integrals of  mot ion  for a Hami l ton ian  
which is linear in the generators ei of  this algebra. 

Suppose that  we have a representat ion of the algebra ~r i.e., a set of 
N linear opera tors  ei, 1 ~< i <~ N, satisfying the generalized D o l a n - G r a d y  
conditions (11), (12). Consider the opera tor  H, the Hami l ton ian  

H=kle~ +k~_e2 + ... +kNeN (41) 

where k~ are some constants. 
If  we consider H as a vector  in tiN, then the image 7r(H) of H under  

the action of the i somorphism n, (29), is a vector  in ~N: 

N 

7r(H)= ~ k iS i ( l )  (42) 
i = 1  

N - - I  

= ~ ki(Ei.i+l +Ei+ 1.i) + kN(tENI + t-lElu) (43) 
i = l  
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Now let us consider the following set of vectors in ~N: 

N 

"it = ~ k,(S,(N+ 1 ) + 2 5 , + , ( N -  1)) (44) 
i = l  

= (t + ( - 1) N t - l )  rr(H) (45) 

N 

I., = ~. ki(~i(Nrn + 1 ) + 2S,+ ~(Nm - 1 )) (46) 
i = 1  

=( t - - ( - -1 )Nt - I )2 ( t+( - -1 )Nt - t ) ' -2n (H) ,  m = 2 , 3  .... (47) 

These vectors obviously commute between themselves and with the 
operator rt(H). Therefore taking the inverse of rt we arrive to the conclu- 
sion that the members of the following set of elements {I.,}m>.O of the 
algebra d N commute between themselves: 

N 

I.,= ~" ki (S~(Nm+l)+2Si+l(Nm-1)) ,  m>~l (48) 
i = 1  

I 0 = H (49) 

[ i . , ,I , , ]  =0, m~>0 (50) 

Thus if the conditions ( 11 ), (12) are satisfied, H is a member of the infinite 
family of integrals of motion in involution. Each of these integrals is a vec- 
tor in dN and is expressed in terms of the operators e~ according to the 
definition of strings SAr) given in (13). Since the strings are linearl inde- 
pendent, the vectors I k are linearly independent in dN as well. 

7. CONCLUSION 

As we have seen, the original Dolan-Grady relations that define 
Onsager's algebra admit a generalization. This generalization stands in the 
same relationship to the underlying sl(N) loop algebra for N>~ 3 as the 
original Onsager's algebra to the s/(2) loop algebra. The crucial property 
of Dolan-Grady relations--the fact that they generate an infinite series of 
integrals of motion in involution--is naturally present in this generalization. 

A number of further questions present themselves. The first two of 
these are: What is the analog of Onsager's algebra for any Kac-Moody Lie 
algebra, and what are the corresponding analogs of the Dolan-Grady 
conditions? The answers are quite straightforward and we intend to report 
on this in a forthcoming publication. 

Another problem concerns the representation theory of the sl(N) 
Onsager's algebra. The classification of finite-dimensional representations 

822/82/I-2-8 
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of  d N  should  be carr ied ou t  in o rder  to o b t a i n  an  a n a l o g  of  the eigen- 
va lue  fo rmula  (9). F ina l ly ,  we need to find examples  of  mode ls  wi th  
H a m i l t o n i a n s  of  the form (10) tha t  satisfy the cond i t i ons  (11), (12) a n d  
c a n n o t  be m a p p e d  on to  free fermions.  Some special cases of  the spin cha ins  
associated wi th  the s l (N)  chiral  Po t t s  mode l s  (-'2) seem to be n a t u r a l  
cand ida tes  for such models .  
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